Рентгеновский лазер EuXFEL приближается к точке выхода на полную мощность - «Наука и технологии» » Экономические новости.
Экономические новости. » Экономические новости » Технологии » Рентгеновский лазер EuXFEL приближается к точке выхода на полную мощность - «Наука и технологии»
Рентгеновский лазер EuXFEL приближается к точке выхода на полную мощность - «Наука и технологии»
Напомним нашим читателям, что европейский лазер на свободных электронах EuXFEL, являющийся сейчас самым большим в мире подобным лазером, начал ускорять первые электроны в 2015 году, а первые вспышки рентгеновского излучения были получены на этой установке в мае 2017 года. В сентябре прошлого года
Лазер EuXFEL

Напомним нашим читателям, что европейский лазер на свободных электронах EuXFEL, являющийся сейчас самым большим в мире подобным лазером, начал ускорять первые электроны в 2015 году, а первые вспышки рентгеновского излучения были получены на этой установке в мае 2017 года. В сентябре прошлого года это грандиозное сооружение, построенное в недрах 3.4-километрового туннеля неподалеку от Гамбурга, Германия, было отдано в распоряжение ученых. И уже в августе этого года была опубликована первая научная работа, основанная на результатах, полученных при помощи лазера EuXFEL.

В настоящее время для проведения исследований доступны лишь два помещения, в которые проведены отдельные выходы рентгеновского излучения. Но к 2019 году у лазера EuXFEL будет уже шесть экспериментальных помещений, в которых ученые смогут использовать импульсы, вырабатываемые тремя независимыми рентгеновскими лазерами. Из-за ограниченных возможностей существующей системы охлаждения, "скорострельность" лазера EuXFEL ограничена сейчас 27 тысячами импульсов в секунду, но в будущем этот лазер сможет вырабатывать практически непрерывный поток импульсов - 1 миллион импульсов в секунду.

Сердцем лазера EuXFEL является 2.1-километровый линейный ускоритель, в котором установлено множество сверхпроводящих резонаторов. Высокочастотные радиоволны, поданные на элементы этих резонаторов, создают в них положительные и отрицательные электрические поля. Электроны попадают внутрь ловушки резонатора, когда на нем присутствует положительное электрическое поле, а смена полярности поля на отрицательную позволяет "выстрелить" этими электронами словно из пушки. И прохождение электронов через каждый резонатор снабжает их дополнительной энергией.

Электроны покидают ускоритель, обладая энергией в 17.5 гигаэлектронвольт, и подаются внутрь так называемого ондулятора, составленного из множества постоянных магнитов. Суммарное магнитное поле ондулятора имеет синусоидальную форму, по такой же траектории движутся и попавшие туда электроны. Каждый раз, когда электрон меняет направление движения, он теряет энергию, испуская фотон рентгеновского излучения. Все фотоны собираются, фокусируются и в результате вырабатывается короткий, мощный и острый как игла импульс рентгеновского излучения

Большое количество резонаторов позволяет ускорителю разгонять до 27 тысяч пучков электронов за один раз. Каждый из этих пучков, попадая в ондулятор, вырабатывает один рентгеновский импульс. Основным достоинством такого способа являются абсолютно идентичные параметры всех вырабатываемых импульсов, что обеспечивает более идеальные условия для проведения измерений и экспериментов, чем любой другой из существующих рентгеновских лазеров.

Идентичность вырабатываемых лазером EuXFEL импульсов позволяет ученым создавать "молекулярные и атомарные фильмы", позволяющие увидеть поведение атомов и молекул во время быстротечных химических реакций. Также, подобная съемка позволяет увидеть изменения в структуре материалов во время воздействия на них механических усилий, тепла, электромагнитного излучения или света.

{full-story limit="10000"}
Ctrl
Enter
Заметили ошЫбку?
Выделите текст и нажмите Ctrl+Enter
Мы в
Комментарии
Минимальная длина комментария - 50 знаков. комментарии модерируются
Комментариев еще нет. Вы можете стать первым!
Комментарии для сайта Cackle
Кликните на изображение чтобы обновить код, если он неразборчив


       
Экономические новости
Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика