Созданы тонкопленочные транзисторы на основе соединений цинка, обладающие рекордным быстродействием - «Наука и технологии» » Экономические новости.
Экономические новости. » Экономические новости » Технологии » Созданы тонкопленочные транзисторы на основе соединений цинка, обладающие рекордным быстродействием - «Наука и технологии»
Созданы тонкопленочные транзисторы на основе соединений цинка, обладающие рекордным быстродействием - «Наука и технологии»
Если вы читаете эти строки с экрана жидкокристаллического монитора, то вы делаете это в большей степени благодаря работе одного из ключевых компонентов жидкокристаллических матриц - прозрачных тонкопленочных транзисторов. Такие транзисторы работают в точности как их обычные полупроводниковые
Тонкопленочный быстродействующий транзистор

Если вы читаете эти строки с экрана жидкокристаллического монитора, то вы делаете это в большей степени благодаря работе одного из ключевых компонентов жидкокристаллических матриц - прозрачных тонкопленочных транзисторов. Такие транзисторы работают в точности как их обычные полупроводниковые аналоги, но их чрезвычайно тонкая структура нанесена на поверхность стекла или прозрачного полимерного материала. В матрицах дисплеев такие транзисторы должны быть расположены максимально близко к ячейке, которой они управляют, что обеспечивает высокое качество, скорость реакции и стабильность изображения на экране.

Исследователи из Корейского университета (Korea University) и Института передовых технологий компании Samsung (Samsung Advanced Institute of Technology) разработали новый тип тонкопленочных транзисторов, который имеет существенно большее быстродействие, нежели его аналоги, используемые в настоящее время. Появление такого транзистора является большим шагом в деле увеличения быстродействия жидкокристаллических дисплеев и в первую очередь, дисплеев, предназначенных для смартфонов, планшетных компьютеров и телевизоров. Основным материалом нового транзистора является оксинитрид цинка (ZnON), а при его создании используется новый технологический процесс, в котором задействована плазма из ионов инертного газа аргона.

Различные исследовательские группы уже давно работают над созданием тонкопленочных структур из соединений на базе оксида цинка. Но в основном все пытаются использовать допирование материала катионами различных металлов, таких, как индий, галлий, гафний, цирконий и др. Атомы этих металлов обеспечивают увеличение скорости движения электронов под воздействием электрического поля, их подвижности. Самой высокой подвижностью (200 см2/вольт*сек) в настоящее время обладают электроны в графене, в то время, как в традиционных полупроводниках их подвижность составляет от 5 до 20 см2/вольт*сек.

"Для обеспечения высокой производительности и экономичности электронных устройств будущего требуется подвижность носителей электрического заряда выше 100 см2/вольт*сек" - рассказывает Сэнгун Джеон, профессор из Корейского университета, - "Подвижность носителей заряда в созданных нами цинковых транзисторах минимум в десять раз превышает подвижность носителей в обычных тонкопленочных транзисторах".

Ключевым моментом создания цинкового тонкопленочного транзистора стал технологический процесс осаждения материала из смеси азота (N2), кислорода (O2) и аргона. Эти газ попеременно обдували "мишень" из цинка, а ученые в это время тщательно регулировали давление кислорода, поддерживая постоянным давление азота и аргона. Такой процесс привел к формированию гладкой пленки оксинитрида цинка, толщиной около 50 нанометров, которую очень тяжело получить в других условиях из-за низкой реакционной способности между азотом и цинком при условии наличия атмосферного кислорода.

Для предотвращения влияния кислорода ученые использовали защитную аргоновую плазму. Кроме создания защитной атмосферы, наличие плазмы вызвало каскады столкновений атомов и ионов, в результате которых произошло перераспределение энергий химических реакций, что в свою очередь привело к формированию устойчивых химических связей между цинком, азотом и кислородом. Благодаря такому процессу сформировавшаяся пленка материала имела стабильную и равномерную поликристаллическую структуру, которая не разрушается под воздействием различного рода излучений и активных химических веществ.

Испытывая полученный материал, исследователи оставили пленку оксинитрида цинка, полученную их способом, и такую же пленку, полученную одним из традиционных способов, в условиях открытого воздуха на 30 дней. И по окончанию этого срока только новая пленка не показала значительной потери атомов азота, в отличие от второго образца. После этих испытаний исследователи провели измерение подвижности носителей заряда, которая оказалась равна 138 см2/вольт*сек, что на порядок выше, нежели подвижность носителей в пленке традиционной окиси цинка-галлия-индия.

И в результате всех этих усилий на свет появился первый тонкопленочный транзистор из оксинитрида цинка, который на счет высокой подвижности носителей электрического заряда продемонстрировал весьма высокую скорость переключения. К сожалению, из-за производства этих транзисторов в лабораторных условиях, повторяемость результатов была очень низкой и для того, чтобы можно было с уверенностью привести какие-либо цифры, отражающие реальное быстродействие новых транзисторов, ученым потребуется модернизировать процесс их производства, плюс попробовать использовать внедрение в материал катионов других металлов и произвести тщательную ультрафиолетовую очистку полученных пленок материала.

{full-story limit="10000"}
Ctrl
Enter
Заметили ошЫбку?
Выделите текст и нажмите Ctrl+Enter
Мы в
Комментарии
Минимальная длина комментария - 50 знаков. комментарии модерируются
Комментариев еще нет. Вы можете стать первым!
Комментарии для сайта Cackle
Кликните на изображение чтобы обновить код, если он неразборчив


       
Экономические новости
Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика