Новый метаматериал позволит свету распространяться в его среде с бесконечно большой скоростью - «Наука и технологии» » Экономические новости.
Экономические новости. » Экономические новости » Технологии » Новый метаматериал позволит свету распространяться в его среде с бесконечно большой скоростью - «Наука и технологии»
Новый метаматериал позволит свету распространяться в его среде с бесконечно большой скоростью - «Наука и технологии»
Электронные технологии - это технологии 20-го века. В дальнейшей перспективе на смену электронным устройствам должны прийти фотонные и фотоэлектрические устройства, внутри которых для передачи и обработки информации используются лучи или отдельные частицы света - фотоны. Однако, прежде чем такое
Метаматериал

Электронные технологии - это технологии 20-го века. В дальнейшей перспективе на смену электронным устройствам должны прийти фотонные и фотоэлектрические устройства, внутри которых для передачи и обработки информации используются лучи или отдельные частицы света - фотоны. Однако, прежде чем такое может стать реальностью, прежде чем оптические компоненты появятся в процессорах компьютеров и других чипах, исследователям потребуется разработать методы контроля и управления светом на наноразмерном уровне.

Исследователи из Школы технических и прикладных наук (School of Engineering and Applied Sciences, SEAS) Гарвардского университета, возглавляемые профессором Эриком Мазуром (Eric Mazur), в поисках технологий управления светом разработали первый в своем роде метаматериал, который можно использовать в компонентах на поверхности чипов. И самым интересным является то, что этот материал обладает нулевым значением коэффициента преломления, что, в свою очередь, означает, что фазовая скорость света в среде этого материала может быть увеличена теоретически до бесконечности.

"Свет - это субстанция, которую очень трудно сжать и которой достаточно непросто управлять. Но новый метаматериал, сложный материал, обладающий уникальным набором оптических свойств, позволит реализовать некоторые "чудеса" по отношению к свету" - рассказывает профессор Мазур, - "При помощи этого материала мы можем сжимать, изгибать, закручивать и уменьшать диаметр луча света от микромасштаба до наноразмерного".

Понятие бесконечно большой скорости света должно входить в противоречие с Теорией относительности Альберта Эйнштейна. Согласно этой теории ничего во Вселенной не может двигаться быстрее информации, переносимой фотонами света. Но у света имеется еще один вид скорости, так называемая фазовая скорость, которая определяет, как быстро движутся друг относительно друга максимумы и минимумы электромагнитной волны света. И именно эта скорость увеличивается и уменьшается в зависимости от характеристик материала, через который проходит луч света.

Когда свет проходит, к примеру, через воду, его фазовая скорость уменьшается, что приводит к изменениям длины волны. Когда этот свет покидает водную среду, его фазовая скорость восстанавливается до исходного значения и длина волны становится больше. Отношение фазовой скорости света в вакууме к скорости света в материале называют коэффициентом преломления и у воды значение этого коэффициента равно приблизительно 1.3.

Но если материал обладает нулевым значением коэффициента преломления, то в его среде со светом начинают происходить странные и интересные явления. В среде такого материала свет перестает вести себя подобно движущейся волне, состоящей из череды максимумов и минимумов. Фазовая скорость света увеличивается до бесконечности и волна света обретает бесконечно большую длину. Минимумы и максимумы такой волны более не являются ее пространственными характеристиками и переходят в разряд чисто временных показателей.

Обладание такой бесконечной постоянной фазой позволяет лучу света быть растянутым, искривленным и сжатым совершенно без потерь энергии. В этом свете материал с нулевым коэффициентом преломления может обеспечить реализацию технологий, необходимых для области квантовых вычислений и квантовых коммуникаций.

Собственно метаматериал состоит из матрицы кремниевых столбиков, заключенных в основании из полимерного материала, "обернутого" тончайшей золотой пленкой. Такой материал может быть включен в структуру кремниевых волноводов и его наличие позволит реализовать взаимодействие между фотонными компонентами и обычными электронными компонентами, интегрированными на кристалл одного чипа.

"Использование материала с нулевым коэффициентом преломления позволит создать квантовые излучатели, генерирующие фотоны, волны которых четко синхронизированы по фазе друг с другом" - рассказывает Филип Муноз (Philip Munoz), аспирант, работающий под руководством профессора Мазура, - "Это, в свою очередь, позволит получать надежно запутанные на квантовом уровне фотоны и при их помощи более надежно запутывать квантовые биты, кубиты, вычислительных устройств. Наш новый материал только открывает дверь в область исследований физики нулевого коэффициента преломления и применения всего этого в интегральной оптике и оптоэлектронике".

{full-story limit="10000"}
Ctrl
Enter
Заметили ошЫбку?
Выделите текст и нажмите Ctrl+Enter
Мы в
Комментарии
Минимальная длина комментария - 50 знаков. комментарии модерируются
Комментариев еще нет. Вы можете стать первым!
Комментарии для сайта Cackle
Кликните на изображение чтобы обновить код, если он неразборчив


       
Экономические новости
Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика