Сложный материал с изменяемыми свойствами может стать основой для многофункциональных чипов и процессоров - «Наука и технологии» » Экономические новости.
Экономические новости. » Экономические новости » Технологии » Сложный материал с изменяемыми свойствами может стать основой для многофункциональных чипов и процессоров - «Наука и технологии»
Сложный материал с изменяемыми свойствами может стать основой для многофункциональных чипов и процессоров - «Наука и технологии»
Исследователи из Национальной лаборатории Ок-Ридж, занимающиеся изучением поведения наноразмерных материалов, обнаружили материал, способный формировать в его пределах области с различными свойствами. Эти области имеют некоторое сходство с базовыми электронными компонентами и из них динамически
Электронная схема

Исследователи из Национальной лаборатории Ок-Ридж, занимающиеся изучением поведения наноразмерных материалов, обнаружили материал, способный формировать в его пределах области с различными свойствами. Эти области имеют некоторое сходство с базовыми электронными компонентами и из них динамически можно формировать электронные схемы, что позволит микропроцессорам будущих поколений обрести функциональность, находящуюся далеко за гранями возможностей современных микропроцессоров и чипов.

Чудо-материал, на изучении которого сосредоточились исследователи, имеет название LPCMO и он представляет собой сложное окисное соединение, имеющее кристаллическую решетку одноатомной толщины. Когда этот материал разделяется на частицы микро- и наноразмерного уровня, эти частицы обретают различные электронные и магнитные свойства из-за явления, называемого фазовым разделением.

"Во время исследований мы обнаружили, что и в пределах больших частей материала могут существовать так называемые фазовые "карманы", участки, где один и тот же материал имеет различные электронные и магнитные свойства" - рассказывает Зак Вард (Zac Ward), один из ведущих исследователей, - "Эти области, действующие как электронные элементы, которые могут быть соединены друг с другом. Это открывает широкие возможности для создания программируемых и перезаписываемых электронных схем, которые будут находиться прямо на кристаллах микропроцессоров, значительно расширяя их функциональные возможности".

Исследуемый материал изменяет свою фазу в ответ на воздействие внешних магнитных и электрических полей, что позволит создавать электронные схемы при помощи достаточно широкого ряда комбинаций вышеуказанных факторов. "Это совершенно новый подход к формированию электронных схем, которые будут "помогать" микропроцессорам выполнять высокоскоростную обработку сигналов и цифровой информации" - рассказывает Зак Вард, - "Такой новый подход потребует разработки новой многофункциональной архитектуры микропроцессоров, которые смогут обрабатывать одновременно и аналоговые сигналы и информацию в цифровом виде".

Наличие возможности динамического формирования схем позволит микропроцессору быстро адаптироваться под особенности решаемой им в данный момент задачи. Путем программирования местоположения и свойств фазовых областей микропроцессор сможет создать столько аналоговых и цифровых входов для ввода данных и сигналов, сколько ему нужно в данный момент времени. Кроме входов на пластине материала могут быть созданы усилители, фильтры, логические и другие элементы, выполняющие предварительную обработку поступающих сигналов.

"В обычных условиях для обработки процессором множества сигналов различного типа на плате компьютера или контроллера создаются несколько соответствующих сигналам входных цепей" - рассказывает Зак Вард, - "Новый материал позволит "загнать" это все внутрь чипа, что позволит существенно сократить размеры устройства, его стоимость и количество потребляемой электрической энергии".

В своих дальнейших исследованиях ученые из Ок-Ридж планируют изучить свойства ряда других сложных материалов, которые должны демонстрировать поведение, схожее с поведением материала LPCMO. И, вполне вероятно, что им удастся найти окончательный вариант материала, который будет удовлетворять ряду требований, необходимых для успешного использования материала в условиях массового промышленного производства.

{full-story limit="10000"}
Ctrl
Enter
Заметили ошЫбку?
Выделите текст и нажмите Ctrl+Enter
Мы в
Комментарии
Минимальная длина комментария - 50 знаков. комментарии модерируются
Комментариев еще нет. Вы можете стать первым!
Комментарии для сайта Cackle
Кликните на изображение чтобы обновить код, если он неразборчив


       
Экономические новости
Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика