Ученые научились "рисовать" и "стирать" квантово-электронные цепи при помощи света - «Наука и технологии» » Экономические новости.
Экономические новости. » Экономические новости » Технологии » Ученые научились "рисовать" и "стирать" квантово-электронные цепи при помощи света - «Наука и технологии»
Ученые научились "рисовать" и "стирать" квантово-электронные цепи при помощи света - «Наука и технологии»
Группа ученых из Чикагского и Пенсильванского университетов совершенно случайно обнаружила новый способ применения света для "рисования" и "стирания" элементов квантово-электронных схем в среде материала уникального класса, называемого топологическим изолятором. В отличие от самых современных
Метод рисования схем

Группа ученых из Чикагского и Пенсильванского университетов совершенно случайно обнаружила новый способ применения света для "рисования" и "стирания" элементов квантово-электронных схем в среде материала уникального класса, называемого топологическим изолятором. В отличие от самых современных методов нанопроизводства, основанных на химической обработке материалов, новая оптическая технология позволит создавать "перезаписываемые" квантово-электронные устройства, которые найдут применение в новых технологиях, таких, как низкопотребляющая электроника, спинтроника и сверхмощные квантовые компьютеры.

"Данное открытие стало полной неожиданностью" - рассказывает Дэвид Д. Ошалом (David D. Awschalom), профессор из Чикагского университета, - "Это - один из тех редких моментов в экспериментальной науке, когда совершенно случайное событие, спровоцированное осветительными приборами в нашей лаборатории, стало источником новой технологии, которая может оказать сильное влияние на дальнейшее развитие некоторых областей науки и техники".

Электроны, двигающиеся в среде топологических изоляторов, обладают особыми квантовыми свойствами, которые можно использовать в создании спинтроники, электроники, работающей за счет переноса вращения, спина, электронов, и квантовых компьютеров. Однако даже создание самых простых экспериментальных схем из топологических изоляторов является чрезвычайно трудным делом поскольку традиционные способы изготовления электроники имеют тенденцию разрушать структуру топологических изоляторов с их уникальным квантовым состоянием. Более того, даже кратковременный контакт этих материалов с обычным воздухом оказывает сильное негативное влияние на топологический изолятор.

Исследователи нашли способ управлять энергией электронов в топологическом изоляторе при помощи света, без необходимости прикасаться к материалу непосредственно. Области с разной энергией электронов используются для создания аналогов p-n переходов в среде топологического изолятора, на основе которых можно создавать более сложные аналоги электронных компонентов, к примеру, транзисторов.

Ключевым моментом новой технологии стал титанат стронция, материал, используемый исследователями в качестве подложки, на которой выращивались образцы топологических изоляторов. Этот материал обретает электрическую поляризацию, подвергаясь воздействию ультрафиолетового света, который присутствовал в слете люминесцентных ламп, освещавших помещение лаборатории. Электрическое поле от поляризованного титаната стронция проникало в слой топологического изолятора, изменяя его электронные свойства.

В дальнейших исследования ученые выяснили, что преднамеренная фокусировка луча света с определенной длиной волны на образцах позволяет буквально нарисовать некие электронные структуры, которые продолжают существовать после окончания воздействия света. "Теперь нам не требуется неделями торчать в чистых комнатах и бояться загрязнить наши образцы" - рассказывает Ошалом, - "Мы получили возможность сделать эскиз того, что нам требуется, нарисовать это лазером на топологическом изоляторе и измерить характеристики полученного устройства. Как только мы делаем все это, мы можем стереть созданную схему и нарисовать новую на этом же месте. Более того, все это делается крайне быстро, менее, чем за секунду времени".

Используя технологию оптического "рисования" ученые уже изготовили образцы устройств на топологических изоляторах и произвели эксперименты с ними в условиях сильных магнитных полей. При этом, все эти эксперименты, на которые в обычных условиях ушло бы несколько месяцев работы, были проведены буквально за несколько дней. Более того, эксперименты показали, что обнаруженный оптический эффект действует не только по отношению к топологическим изоляторам, но и воздействует на другие материалы, выращенные на подложках из титаната стронция.

"Самым захватывающим является то, что это можно применить по отношению к ряду самых разнообразных наноразмерных материалов, таких, как слои сложных оксидов, графен и переходные дихалькогениды, которые под воздействием влияния титаната стронция обретают совершенно новые физические и квантовые свойства".

{full-story limit="10000"}
Ctrl
Enter
Заметили ошЫбку?
Выделите текст и нажмите Ctrl+Enter
Мы в
Комментарии
Минимальная длина комментария - 50 знаков. комментарии модерируются
Комментариев еще нет. Вы можете стать первым!
Комментарии для сайта Cackle
Кликните на изображение чтобы обновить код, если он неразборчив


       
Экономические новости
Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика