Ученые выяснили некоторые необычные особенности работы мемристоров - «Наука и технологии» » Экономические новости.
Экономические новости. » Экономические новости » Технологии » Ученые выяснили некоторые необычные особенности работы мемристоров - «Наука и технологии»
Ученые выяснили некоторые необычные особенности работы мемристоров - «Наука и технологии»
Ряд крупных компаний, специализирующихся в области электроники и полупроводников, такие, как Hewlett Packard, Intel и Samsung, производят интенсивные поиски новых технологий, которые придут на смену существующей энергонезависимой Flash-памяти. Самым перспективным кандидатом на это место считается
Исследовательская установка

Ряд крупных компаний, специализирующихся в области электроники и полупроводников, такие, как Hewlett Packard, Intel и Samsung, производят интенсивные поиски новых технологий, которые придут на смену существующей энергонезависимой Flash-памяти. Самым перспективным кандидатом на это место считается мемристор и память на основе этих электронных компонентов, Resistive RAM (ReRAM или RRAM). Такая память использует в своей работе меньшее количество энергии и может обеспечивать высокую скорость чтения и записи информации, во много раз превышающие аналогичные показатели NAND Flash-памяти. Однако, результаты последних исследований указывают на то, что несмотря на первые попытки практического применения мемристоров, использующие их специалисты не совсем правильно понимают основные принципы их работы.

Фундаментальный механизм, лежащий в основе работы мемристора, называется несовершенным точечным контактом (imperfect point contact). Теория, лежащая позади этого механизма, была разработана в 1971 году, задолго до момента создания первых устройств на его основе. Когда к мемристорной ячейке прикладывается электрическое напряжение определенного потенциала и полярности, оно вызывает уменьшение электрического сопротивления ячейки, которое сохраняется и после того, как напряжение было снято. А использование напряжение меньшего потенциала позволяет измерить сопротивление ячейки, т.е. прочитать записанную в нее информацию. Прикладывание к ячейке напряжения обратной полярности приводит к восстановлению значения электрического сопротивления - к стиранию записанной в нее ранее информации.

За последнее десятилетие исследователи создали два типа мемристоров - память на основе электрохимической металлизации (electrochemical metallization memory, ECM) и память на основе механизма изменения валентности (valence change mechanism memory, VCM). В ECM-ячейках имеется активный медный электрод, атомы меди на поверхности которого окисляются в процессе записи в ячейку информации. Получающиеся ионы меди мигрируют через слой твердого электролита в сторону второго, платинового электрода. В результате этого процесса в объеме твердого электролита формируется нить из чистого металла, связывающая оба электрода, что приводит к снижению электрического сопротивления.

В VCM-ячейках в результате воздействия "записывающего" напряжения возникают отрицательно заряженные ионы кислорода и положительно заряженные ионы металла. Ионы кислорода покидают пределы объема твердого электролита, способствуя формированию нити, состоящей из полупроводникового материала, которая опять же соединяет электроды мемристора, что опять приводит к снижению сопротивления.

Однако, исследования, проведенные группой из института Петера Грюнберга (Peter Grunberg Institute), Юлих, Германия, возглавляемой Ильей Валовым (Ilia Valov), показали, что в мемристорах происходят сложные процессы, которые стирают различия между ECM- и VCM-ячейками.

Группа Ильи Валова, работая совместно с учеными из Японии, Кореи, Греции и США, произвела исследования мемристоров, имеющих активный электрод из тантала и твердый электролит из окиси тантала. "Наши исследования показали, что в таком типе мемристора действуют одновременно оба механизма изменения сопротивления" - объясняет Илья Валов, - "В таких мемристорах мы имеем не просто кислородный тип изменения сопротивления, в нем задействованы перемещения атомов металла активного электрода".

Для выявления работы второго типа механизма, присущего ECM-ячейкам, исследователи нанесли тонкий слой окиси тантала поверх танталовой подложки. А в качестве второго электрода мемристора использовался наконечник сканирующего туннельного микроскопа. "Мы приложили к наконечнику соответствующее напряжение и зафиксировали факт возникновения металлической нити в вакуумном промежутке между пленкой и наконечником" рассказывает Валов, - "Такая металлическая нить может возникнуть лишь в том случае, если положительные ионы тантала мобильны и имеют возможность перемещаться в среде твердого электролита".

Проводя второй эксперимент, исследователи поместили часть структуры мемристора в оболочку из слоя аморфного углерода, который блокирует возможность перемещения ионов кислорода между танталовым электродом и электролитом из окиси тантала. Тем не менее, мемристор изменил свое сопротивление, что служит доказательством работы и второго типа механизма. Более того, точно такой же результат был получен, когда исследователи вместо аморфного углерода использовали графен, который блокирует перемещение ионов кислорода еще более качественно.

В скором времени ученые планируют проведение ряда дополнительных экспериментов, в которых будут использоваться различные материалы электродов и твердого электролита. Все это будет произведено с целью изучения эффекта подвижности ионов металлов, которые определяют значение сопротивления мемристорной ячейки. "А глубокое и всестороннее понимание происходящих процессов всегда приводит к созданию устройств, отличающихся высокими характеристиками и надежностью" - рассказывает Илья Валов.

{full-story limit="10000"}
Ctrl
Enter
Заметили ошЫбку?
Выделите текст и нажмите Ctrl+Enter
Мы в
Комментарии
Минимальная длина комментария - 50 знаков. комментарии модерируются
Комментариев еще нет. Вы можете стать первым!
Комментарии для сайта Cackle
Кликните на изображение чтобы обновить код, если он неразборчив


       
Экономические новости
Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика