Ученые превратили алмаз в практически идеальный полупроводник для силовой электроники - «Наука и технологии» » Экономические новости.
Экономические новости. » Экономические новости » Технологии » Ученые превратили алмаз в практически идеальный полупроводник для силовой электроники - «Наука и технологии»
Ученые превратили алмаз в практически идеальный полупроводник для силовой электроники - «Наука и технологии»
Группа исследователей из университета Висконсина-Мэдисона (University of Wisconsin-Madison) разработала новый способ легирования монокристаллических алмазов, введения в материал атомов примесей, в данном случае атомов бора. Новый процесс легирования производится при относительно низкой температуре,
Алмаз-полупроводник

Группа исследователей из университета Висконсина-Мэдисона (University of Wisconsin-Madison) разработала новый способ легирования монокристаллических алмазов, введения в материал атомов примесей, в данном случае атомов бора. Новый процесс легирования производится при относительно низкой температуре, благодаря чему кристаллы алмаза не подвергаются разрушению и деградации.

У алмаза имеется ряд свойств, которые могут сделать их идеальными полупроводниками для производства мощной силовой электроники. Алмазы могут использоваться в условиях высоких электрических потенциалов, а низкое удельное сопротивление в случае правильного легирования кристалла позволит кристаллу проводить сильный электрический ток. Алмаз является одним из наилучших проводников тепла, поэтому проблема отвода и рассеивания выделяющегося тепла решается достаточно простыми способами. Несмотря на столь интересные характеристики, практическое использование алмазов в качестве полупроводников затрудняется тем, что из-за прочности структуры этого материала очень тяжело правильно вводить в кристалл атомы легирующих добавок.

В ходе экспериментов ученые выяснили, что если физически соединить монокристаллический алмаз с кремнием, предварительно легированным атомами бора, и нагреть все это до 800 градусов Цельсия, атомы бора под воздействием тепловых колебаний мигрируют из кремния внутрь алмаза. Процесс происходит при относительно низкой для таких процессов температуре и это обусловлено некоторыми особенностями строения легированного кремния. В структуре такого кремния присутствуют вакансии, места в кристаллической решетке с отсутствующими там атомами. Под влиянием тепловых колебаний атомы углерода из алмаза заполняют эти вакансии, оставляя пустое место в структуре алмаза, которое заполняется атомом бора.

Такая технология получила название избирательного легирования и она позволяет получить высокую степень контроля над производимым процессом. При помощи такого метода достаточно просто легировать определенные места монокристаллического алмаза, для этого требуется лишь наложить кремний на необходимые места и нагреть это до указанной выше температуры.

Пока новый метод работает в отношении легирования P-типа, при котором атомы примесей создают носители положительного электрического заряда, так называемые электронные дырки, места в кристаллической решетке с одним отсутствующим электроном. И, используя полученные алмазные полупроводники p-типа, исследователи уже изготовили первые образцы простейших электронных приборов, таких, как диод.

Но, для того, чтобы создать более сложные электронные приборы, такие, как транзистор, требуется легирование N-типа, легирование примесью, атомы которой создают носители отрицательного электрического заряда, лишние электроны в кристаллической решетке. Пока у ученых нет технологии такого легирования, но, вполне вероятно, что результаты данных исследований вдохновят других исследователей и кому-нибудь из них все же удастся найти подходящее решение. И если это произойдет, то на свет появятся новые полупроводниковые приборы, которые с высокой эффективностью будут использоваться для управления электрическим током большой мощности, к примеру, в энергетических сетях.

{full-story limit="10000"}
Ctrl
Enter
Заметили ошЫбку?
Выделите текст и нажмите Ctrl+Enter
Мы в
Комментарии
Минимальная длина комментария - 50 знаков. комментарии модерируются
Комментариев еще нет. Вы можете стать первым!
Комментарии для сайта Cackle
Кликните на изображение чтобы обновить код, если он неразборчив


       
Экономические новости
Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика